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Abstract

Associative learning has offered vital insights into psychopathology. However, illness exists on a
continuum, and identifying disturbances in associative learning processes related to psychopathology
demonstrates a general adaptability in human associative learning. A few studies have looked mainly at
individual variations in human associative learning. Yet, while much work has focused on accounting
for adaptability in learning caused by external factors, there has been little consideration of how to
model the impact of dispositional factors. This review examines the spectrum of individual differences
investigated in human associative learning, as well as attempts to understand and model this
adaptability. To completely comprehend human associative learning, additional research must focus on
the sources of diversity in human learning.

Keywords: Association learning, individual variations, depression, psychopathology, perceptual
processing

Introduction

Individual variations in the human population have been studied to improve understanding of
anything from academic achievement to crime and delinquency, money and poverty, and
health (Lubinski, 2000) ™. Individual variations in human learning have helped us
understand the mechanisms behind psychopathology, primarily because learning identifies a
process and, thus, a method by which individuals may differ. Because psychopathology traits
vary across the population, our study of the relationship between psychopathology and
disruptions in association learning processes may reveal significant information on the nature
and breadth of diversity in human associative learning. While proof that people do not all
learn in the same way has been used to assist us in comprehending aspects of
psychopathology, this investigation of adaptability in human learning must be integrated into
our overall understanding of learning strategies so that models can account for the factors
that cause variance in learning. Investigating individual variations in all areas of associative
learning would be an overly broad scope for this review. This research examines diversity in
learning about stimulus pairings in order to focus on individual variations. Specifically, this
paper gives a variety of instances indicating individual variations in learning selectivity and
proclivity to learn about certain elements or combinations, as well as how theories of
associative learning might account for this variation.

Associative learning theorists explore the acquisition and utilisation of connections between
stimuli representations to interpret behaviour. Much of this research focuses on which factors
affect learning and how they do so. The fundamental framework of error prediction learning,
illustrated in Equation (1), gives us an idea of numerous elements that could influence
learning. Rescorla and Wagner described this equation in 1972. AVa=on x f X (A —Y.V) (1)
This equation illustrates the change in associative intensity of a stimulus (AVn) as a function
of prediction error, which is the difference between the expected and actual outcomes of a
particular stimulus. The prediction error is calculated as the difference between the
asymptote of learning (), the total associative intensity that the unconditioned stimulus (US)
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may support, and the current associative intensity of all
stimuli on the trial. The prediction error is compounded by
the salience or strength of the stimulus (o) and the US (B).
Research has explored the impact of varying stimulus
strength and salience (o) on learning (Logan, 1954; Perkins,
1953; Redhead & Pearce, 1995) 3% 70 71 There has also
been considerable discussion of how focus shifts between
different stimuli can impact learning (Pearce & Hall, 1980;
Mackintosh, 1975; McLaren et al., 2010; de Wit &
Dickinson, 2009; Harris & Livesey, 2010; Le Pelley &
McLaren, 2004; Lubow, 2010) [67. 46, 53, 14, 24,36, 42] ‘a5 \well as
how previous experiences may influence the acquisition of
new stimulus representations and their associations
(Seligman, 1972; Kamin, 1968; Lubow et al., 1976) (80 28. 441
This review examines whether these elements are constant
across the population or whether their impact on learning
varies by individual. Because much of the research on
individual variations in human associative learning is related
to psychopathology, this review draws mainly on examples
from clinically focused studies. The research presented here
shows significant individual variability in key components
of associative learning. The article ended with a brief
discussion of how theories of associative learning can
account for observed individual variations.

Stimulus Salience and Selective Prediction Error
Individual variations in perceptions of what is essential may
influence association formation. The efficacy of associative
learning increases with stimulus salience (Kamin & Schaub,
1963; Kamin & Brimer, 1963) [3% 39 For example, if two
stimuli of varying salience coexist, the more salient stimulus
should develop stronger stimulus-outcome linkages
(Mackintosh, 1971; Kamin, 1969) 5 29 Additionally, the
potency of associative learning has been linked to that of the
unconditioned stimulus (US; Pavlov, 1927) [ For
example, conditioned response to shock in rabbits was
found to be proportional to the shock's severity in the US
(Smith, 1968) [#2. To summarise, with a somewhat simple
example, a child playing with a toy could discover that
pressing a lever on the object activates a light. The apparent
intensity or salience of the light (the outcome of the
behaviour) affects the associative intensity that can be
maintained. The apparent kinaesthetic experience of
touching the lever (the strength or salience of the stimulus)
will also impact the learning degree. Variation in what
people perceive as salient should have a significant impact
on association acquisition, and it could result in disparities
in associative learning in anxiety and depression.

Depression has been linked to a preference for negative
information (Mogg et al., 1995; Gotlib et al., 2004; Bradley
et al., 1997; Matthews et al., 1995; Rusting, 1998, 1999;
Phillips et al., 2010; Chan et al., 2007) [56. 20. 9. 50, 77, 78, 71, 12]
This should affect the associations learnt. Salient stimuli
will be used to learn to the detriment of less salient stimuli
(Mackintosh, 1971) 31, As a result, if those suffering from
or at risk of developing depression find negative information
more prominent, they are more likely to make associations
with negative stimuli rather than good or neutral stimuli.
When learning happens, the amount of learning that may be
maintained is determined by the strength of the consequence
or unconditioned stimulus (Rescorla & Wagner, 1972) [76],
As in the case of the child playing with a toy, the link
between pressing the leaver and the outcome of the light
going on may be determined by both the brightness of the
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light and the child's interest in the lights. If the child shows
little interest in lights, we may conclude that the lights
perceived salience is restricted for that child. In this
instance, the light's ability to facilitate learning should be
minimised. Applying this logic to those suffering from
depression, we can see how a propensity to find adverse
information more salient may raise the perceived
prominence of unfavourable outcomes. This should enhance
adverse outcomes, allowing for a more substantial
accumulation of associative strength. This could lead to
those suffering from depression developing strong links
between stimuli and unfavourable outcomes, increasing
subsequent negative expectations. As a result, the
inclination to prioritise negative information may reinforce
the expectation of unfavourable outcomes.

Similar discrepancies in stimulus perception may
characterise anxiety-related fear conditioning. Enhanced
fear conditioning may play an essential role in anxiety
disorders (Mineka & Zinbarg, 2006; Craske et al., 2006) [5*
18l Variations in the perceived strength of a frightened
stimulus may explain variations in how easily fear
associations are learnt or maintained (Otto et al., 2007) [62,
For example, participants' judgements of the averseness of a
US have been found to correlate strongly with their ability
to learn to distinguish between a stimulus (CS) coupled with
the aversive US and a CS not matched with the US (Joos et
al., 2013) 271,

However, the prominence of a stimulus does not remain
constant. Stimulus salience can vary with experience
(Pearce & Hall, 1980; Pearce & Mackintosh, 2010; Le
Pelley & McLaren, 2004; Mackintosh, 1975; Le Pelley et
al., 2010) [67. 8. 36,46, 371 | earning may be easier with stimuli
that have strong predictors of an outcome, whereas stimuli
that are poor forecasters lose their capacity to capture
attention (Mackintosh, 1975) 6], Research investigating
associative learning mechanisms, which may be underlying
schizophrenia symptoms, has found examples of individual
variations in stimulus salience changes across time.

Usually, frequent exposure to a stimulus uncorrelated with
an outcome reduces later ability to learn about that stimulus
(Lubow et al., 1976; Lubow & Moore, 1959; Lubow, 2010)
[44, 43, 421 This phenomenon has been referred to as latent
inhibition. One explanation for this change is that repeated
contact with the stimulus reduces its salience, particularly its
attentional associability, so the level of attention given to the
stimulus decreases compared to other stimuli (Le Pelley,
2004; Mackintosh, 1975) [35 461 Attentional associability
determines which stimuli are accessible to learning and
which are not (Le Pelley, 2004; Mackintosh, 1975) [35 461,
Hence, a decrease in attentional associability should impair
learning.

This process of latent inhibition is interrupted in
schizophrenia, and it is linked to negative symptoms
precisely (Vaitl & Lipp, 1997; Lubow et al., 1976; Lubow,
1989, 2010; Grey et al., 1995; Baruch et al., 1988; Gal et
al., 2009; Rascle et al., 2001) [88 44, 41, 42,22, 7, 19, 72] |y
contrast, animal models of positive schizophrenia symptoms
have shown persistent latent inhibition or compelling latent
inhibitory mechanisms (Weiner, 2003) [*%, Compared to the
abundance of research on interrupted latent inhibition in
human participants, there has been little investigation into
the impact of persistent latent inhibition in the community.
Further research would help determine whether associative
learning mechanisms are relevant to understanding positive
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symptoms of schizophrenia. However, the disruption of
latent inhibition linked to negative schizophrenia symptoms
shows that negative symptoms are related to a deficiency in
selective attention (Weiner et al., 1981, 1984; Solomon et
al., 1981) 1. 92,83 or selective prediction error (Hasselgrove
& Evans, 2010) [26],

Haselgrove & Evans (2010) ! employed the blocking
effect to investigate the link between selective prediction
error and schizophrenia. Blocking is assumed to be based on
selective prediction error. Kamin (1968, 1969) [28 2l
discovered that past training with one stimulus interacts with
the acquisition of associative intensity with a second
stimulus when delivered concurrently with the first stimulus.
For example, suppose a stimulus is paired with an outcome
(A+) before matching two stimuli with the same result
(AXE+). In that case, the associative intensity acquired by
the second stimulus (X) is lower than that of the control.
According to Haselgrove & Evans (2010) 8, this impact is
explained by selective prediction error. The Rescorla and
Wagner model of learning, outlined above in Equation 1,
employs a summed error term and anticipates that the
change in the associative intensity of a stimulus is
proportional to the difference between the asymptote of
learning supported by the result and the associative strength
of all stimuli offer on a trial. For example, A has previously
predicted the result in the AXE compound trial. Therefore,
the prediction error is minimal, prohibiting learning with X.
A failure to display blocking may indicate that prediction
error is non-selective, i.e., on the AXE compound trial, the
associative intensity acquired by A is not considered when
learning with X, and so learning with X may take place
(Haselgrove & Evans, 2010) [26],

Blocking is disturbed in schizophrenia, which is linked to
the disease's negative and depressive symptoms (Moran et
al., 2008; Bender et al., 2001) %8 8. This impact has been
reproduced in a non-clinical population; individuals with
high levels of introverted anhedonia, a negative symptom of
schizotypy, exhibit impaired blocking (Haselgrove & Evans,
2010) 281, The observation of this impact with the dimension
of schizotypy shows that individuals in the general
population vary significantly in the selectivity of their
learning.

Attending To the Cues or the Context

In an associative learning model, participants are typically
given the chance to learn how a stimulus predicts the result.
Specificity is a key component of this learning. Learning
that particular stimulus, rather than the context in which it is
presented or any other given stimuli, predicts the result of
interest. To return to the original example of a child playing
with a toy, pressing the lever activates a light. Playing with
the toy allows the child to experience the possibility of
leaver pressing and the appearance of the light. Experience
with this contingency should help you learn that pressing the
leaver, instead of any other indication in the environment,
turns on the light.

A lack of specificity in learning could explain the link
between anxiety and high levels of conditioned fear (Baas et
al., 2008; Baas, 2013) [ 2. For example, suppose an
unpleasant stimulus (US) is delivered in a specific context.
In that case, it is possible that the context will become
associated with the US, and so the context may begin to
elicit a fear response. If the aversive US is always and only
shown immediately following a given cue, the cue can be
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utilised to predict the aversive US. Learning the precise
relationship between the cue and the US should lessen the
link between the context and the aversive US, as the context
is a less accurate predictor of the US than the cue. Failure to
learn this precise association may result in ongoing overall
anxiety about the context. Studies have found a link between
learning a specific association between a danger cue and the
unpleasant US and decreasing overall dread of the situation
in which the cue and the aversive US are given. Baas (2013)
21 found that those who failed to understand the relationship
between a specific threat cue and the unpleasant US
assessed the situation in which that stimulus was given as
frightening Participants who learnt the specific CS-US
association experienced lower fear ratings for the scenario
(Baas, 2013) 2. However, this study found no link between
trait anxiety and failure to learn the specific connection,
while it is plausible that failure to learn the particular
association is related to anxiety traits such as attentional
control (Baas, 2013; Derryberry & Reed, 2002) [ 161,
Individual variations in the specificity of learning about cues
in a situation can be observed in contingency learning in
humans. Learning contingencies enables people to judge
how well events and actions predict future outcomes,
enabling experience to guide behaviour (Baker et al., 2001)
61 While positive contingencies, in which the probability of
an event occurring rises with the presence of a stimulus, are
common, we also encounter zero contingencies, in which
the outcome is equally likely to happen in the presence or
absence of a stimulus. The accuracy in detecting zero
contingencies is relatively low, particularly when people are
asked to examine whether their actions produce an outcome
(Baker et al., 2010; Alloy & Abramson, 1979) [> 1. Alloy &
Abramson (1979) ™M asked participants to press a light
switch and assess how much control they had over a light
turning on and off. There was no contingency connection
between pressing the light switch and the light turning on;
the light was equally likely to turn on during trials when the
light switch was not pressed as during trials when it was
pressed. Alloy & Abramson (1979) ™M discovered that sad
individuals correctly perceived that they had no control over
the light. Non-depressed individuals wrongly assumed they
had control over the light. This phenomenon was dubbed
depressive realism (Alloy & Abramson, 1979) M. Recent
studies on this effect imply it is less susceptible to context
information (Msetfi et al., 2005) 59, Msetfi et al. (2005) (59
altered two factors when rerunning the original Alloy and
Abramson experiment: result density and inter-trial interval
(ITI). This experimental design divides the chance to press a
light switch into trials based on the occurrence or non-
occurrence of the light. The ITI, or the amount of time
between trials, can be modified. Event density, or the
fraction of trials in which an event happens, can likewise be
adjusted while keeping a zero contingency. For instance, in
a low outcome density situation, the light may illuminate
25% of the trials in which the light switch is pressed and
25% of the trials in which it is not pressed. In a high
outcome density situation, the light may turn on in 75% of
trials when the light switch is pressed and 75% when it is
not.

Msetfi et al. (2005) [ found that the original Depressive
Realism impact occurred only when the ITI was long, and
the resulting density was high. Non-depressed respondents
did not overestimate their influence over the light during
shorter ITIs or when the outcome density was lower.
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Interestingly, in a long ITI design, respondents are exposed
to the context despite the outcome; that is, they have a more
significant experience with no-action (those who
participated cannot press the light switch during the ITI) and
no outcome (the light never turns on during the ITI). Getting
more exposed to the no-action, no-outcome contingency
raises the contingency between action and outcome. As a
result, given these conditions, non-depressed individuals
were correct in assuming they had some influence over the
outcome. The inability of depressed participants to enhance
their judgements of control shows that they were
unresponsive to the no-action, no-outcome information
offered during the ITI (Baker et al., 2010; Msetfi et al.,
2005) 5591,

Learning About Constituent Elements or Configurations
While linear learning is the acquisition and application of
associations between single stimuli and outcomes, non-
linear learning is the learning of compound stimuli in
separate configurations associated with different outcomes
than those associated with the compound's constituent
stimuli. The Rescorla &Wagner (1972) [¢1 model of
elemental learning posits that each stimulus is processed
separately, resulting in its own associative relationship to
the outcome. When learning about and reacting to
compound stimuli, this fundamental method assumes that
each component stimulus forms its own associative
relationship with the result. As a result, the model suggests
that the associative intensity of a compound stimulus (Vab)
is the algebraic sum of the associative strengths of the
stimuli delivered (Vab = Va + Vb). While elemental theory
actually accounts for situations in which the outcome of the
co-occurrence of stimuli is higher than that of the separate
constituent stimuli, non-linear bias tasks necessitate learning
the opposite relationship: where the outcome of the co-
occurrence of stimuli is lower than, or opposite to, that of
the separate constituent stimuli. Non-linear bias, such as
negative patterning, can be solved successfully by humans
and animals (Shanks & Darby, 1998; Deisig et al., 2001;
Redhead & Pearce, 1995; Myers et al., 2001; Grand &
Honey, 2008; Harris et al., 2008; Pearce & George, 2002;)
[81, 15, 74, 60, 21, 25 66] This cannot be explained using the
standard Rescorla & Wagner (1972) "8l elemental model.
Non-linear bias learning, on the other hand, can be
explained using configural theory (Pearce, 1987) [©4,
Configural theory (Pearce, 1987) 64 holds that linkages
emerge between outcomes and unitary or configural
representations of the stimuli present in a given trial. As a
result, the configuration contained in a compound trial (AB)
should associate with an outcome irrespective of the
associations built between the constituent stimuli and
outcomes. Though these two types of models make
opposing predictions about how the link between constituent
stimuli and configurations should be taught, both models
have substantial support, indicating significant diversity in
non-linear learning. Melchers et al. (2008) 551,

It has been proposed that the perceptual qualities of stimuli
impact whether learning occurs with individual constituent
stimuli (elemental) or configurations (Kehoe et al., 1994,
Myers et al., 2001; Rescorla & Coldwell, 1995; Lachnit,
1988) [32. 60. 75, 34 Others suggest that these are two distinct
forms of learning, each mediated by a different neural
substrate (Sutherland & Rudy, 1989; Fanselow, 1999) [84 18],
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Several studies have examined whether people differ in their
proclivity to learn about constituent elements or
arrangements. The negative patterned discrimination (A+,
B+, AB-) is an adequate test of configural learning, as it
requires participants to learn that the compound stimulus has
a different outcome than each constituent stimulus. Shanks
and Darby (1998) 81 proposed that humans' ability to learn
non-linear discriminations, like negative patterning, may be
contingent on rule use. Shanks & Darby (1998) ® found
that the capacity to learn negative patterning discrimination
was linked to later usage of rule-based generalisation rather
than feature-based generalisation. Rule-based generalisation
relies on the abstraction and generalisation of a rule. Surface
similarity across different stimuli and molecules is required
for feature-based generalisation. As a result, it is
hypothesised that rule-based generalisation is more
complex. It may be a deeper grasp of the discrimination
(Shanks & Darby, 1998) 81 or increased working memory
capacity (Wills et al., 2011) [,

In the Shanks & Darby (1998) B3 experiment, respondents
were trained on negative patterning discrimination (A+, B+,
AB-) intermixed with trials in which separate stimuli were
paired with the outcome (I+, J+) before being prompted to
predict the result following the co-occurrence of the
separately trained stimuli (1J?). Some of the respondents
predicted the event to occur after the 1J compound,
demonstrating feature-based generalisation. Others showed
the use of a negative patterning rule, which predicted no
effect after the 1J compound. Rule-based generalisation was
linked to significant initial discrimination learning (Shanks
& Darby, 1998) B4, Wills et al. (2011) *3 discovered that
people who completed a concurrent activity while learning
the same initial discrimination were prone to exhibit feature-
based generalisation (Wills, 2011) %31, As a result, larger
working memory capacity may correlate with more
substantial non-linear discrimination learning and rule-based
generalisation. Baker (2013) [ found that success in Raven's
Progressive Matrices (Raven, 2000) [*] was associated with
the capacity to learn about negative patterning
discrimination. Ravens Matrices are intended to measure
reasoning abilities. Therefore, these findings may support
the hypothesis that rule wuse enhances non-linear
discrimination learning, like negative patterning.

Negative patterning, on the other hand, necessitates learning
about a configuration (i.e., the coexistence of stimuli) in
addition to learning about the constituent stimuli. We can
thus assume that a proclivity to perceive or interpret
groupings of stimuli as a unitary configuration rather than
just a cluster of co-occurring inputs may influence
performance. Similar requirements for tasks have been
investigated in other fields of psychology. For example, face
recognition is assumed to rely on configural processing
(Tanaka &Farah, 1993; Diamond & Carey, 1986; Maurer et
al., 2002; Leder & Bruce, 2000) [85 7. 51 381 Strong face
recognition has been linked to a general advantage in global
processing (Perfect, 2003; Macrae & Lewis, 2002) 6% 471,
which tends to process global information first or with a
greater priority than the particular elements that make up the
global stimuli (Navon, 1977). 61

Individual variations in their inclination to demonstrate a
global or local processing advantage (Navon, 1977) 64 and
it may be that this variation relates to, or impacts, the ability
to learn about combinations of inputs and so learn a non-
linear discriminate. Byrom & Murphy (under review) found
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that individuals with a global processing advantage were
more likely to discriminate BC from ABC in an improved
negative patterning task (A+, BC+, ABC-), which is similar
to the discrimination task developed by Shanks and Darby.

Modeling Individual Difference in Human Associative
Learning

Using associative learning to investigate clinical events has
helped us better understand the mechanisms behind
cognitive aspects of psychopathology. Given that
psychopathology is widely considered to occur on a
spectrum, the clinical cases offered here help to demonstrate
significant individual variations in associative learning
processes. For example, whereas schizophrenia is a primary
mental health disease with a prevalence of approximately
0.4% (McGrath et al., 2008; Saha et al., 2005) [ 7]
schizotypy, a dimension reflecting schizophrenia features,
varies across the population (Mason & Claridge, 2006;
Mason et al., 2005) 48 491, Schizotypy, like schizophrenia, is
linked to disruptions in latent inhibition and blocking
(Haselgrove & Evans, 2010; Moran et al., 2003) [26. 571,
and poor conditional task performance (Haddon et al., 2011)
231 and visual context processing (Uhlhaas & Silverstein,
2005; Uhlhaas et al., 2004) [86.871,

Models of learning might be required to account for this
adaptability. If associative learning mechanisms differ
throughout the population, focusing on the average
performance of a sample while creating learning models
may result in models that do not accurately capture the
population's performance. Simple learning models have seen
numerous revisions over time. While these improvements
help the models to capture a greater variety of experimental
results, many different parameters change during learning.
Thus, it may not be appropriate to look for a single
alteration to account for all variability in learning. One
measure is unlikely to capture all components contributing
to individual variability in human associative learning.
Individual variations in many of the above characteristics
can be reflected by changing the parameters in the Rescorla
& Wagner (1972) I8l learning model, as given in Equation
(1). Modifying o or B can account for individual variations
in the perceived salience of the CS or US. Varying A
accommodates individual variations in learning rates.
Furthermore, Haselgrove & Evans (2010) ! found that it
may be possible to account for individual variations in
learning selectivity by altering the extent to which a
separable (Bush & Mosteller, 1951) [° rather than a
summed (Rescorla & Wagner, 1972) U8l error term is used.
The variation and integration of summed and separable error
terms, as well as their relationship to attention processes,
have been extensively studied elsewhere (Pearce &
Mackintosh, 2010; Lepelley, 2004) [68. 35,

On the other hand, individual variations in the capacity to
solve negative patterning to discrimination cannot be
explained by changing existing parameters in this model. At
least three ways have been proposed to offer adaptability
between elemental and configural learning models: the
sampling capacity parameter, the discriminability parameter
and the replacement parameter. Each is discussed below.
The Replaced Elements Model (Wagner, 2003; Brandon et
al., 2000) [8 11 views stimuli as having several features or
elements. The model focuses on the characteristics of all
stimuli and how they interact with elements distinctive to
each stimulus. In a compound representation, context-
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independent elements are thought to be activated anytime
the stimulus is delivered. In contrast, context-dependent
elements can be stimulated or inhibited based on the
combinations of stimuli shown (Brandon et al. 2000) I,
For example, if stimulus A is delivered along,
representations of items Al and A2 may be engaged. When
stimulus A is provided along with stimulus B, the element
A2 can be replaced by a new element, A3. The paradigm
requires that a compound have no more remarkable ability
to evoke associative power than any of its individual
constituents. As a result, adding and inhibiting elements
causes a qualitative change in represented elements instead
of a quantitative change.

The replacement parameter r allows for variation in the
proportion of context-dependent elements replaced when
stimuli are given in compound form (Wagner, 2003) [,
When r is zero, no replacement occurs, and so a
considerable generalisation of associative power between
stimuli and compounds is expected. When r is 1, elements
are significantly replaced; hence, the generalisation
predicted between compounds and constituent stimuli is
diminished. With maximal element replacement, the
compound representation must be unique from the
representations of the individual stimuli.

The discriminability parameter proposed by Kinder &
Lachnit (2003) (31 adds flexibility to a configurable learning
model (Pearce, 1987) 64, enabling the perceived similarity
between stimuli and compounds to be adjusted. This also
influences how much generalisation of associative power is
projected. The change implies that as it gets more
challenging to determine constituent stimuli within
compounds, the discriminability parameter will fall,
lowering the prediction of perceived similarity between
compounds and constituent stimuli (Kinder & Lachnit,
2003) &8,

Although the replacement and discriminability parameters
were designed to account for the influence of external
factors like stimulus modality (Kehoe et al., 1994) 321, the
sampling capacity parameter was created to account for
individual variations found in human associative learning.
Sampling capacity is defined as the number of stimulus
features that are capable of being sampled within a single
trial. To learn about and react to the co-occurrence of
stimuli as a distinct combination, Byrom & Murphy (under
review) propose that aspects of each co-occurring stimulus
be collected concurrently to represent a configuration in any
given sample. Variations in sampling capacity must result in
variations in the amount to which co-occurring stimulus
features can be sampled, as well as variations in the ability
to encode and learn about the various combinations of
stimuli needed to acquire non-linear discrimination. Byrom
& Murphy (under review) propose that the influence of
changing sampling capacity can be modelled by integrating
a parameter, f, into a variant of Pearce's configural model of
associative learning. This value reflects the chance of
encoding a configuration computed using sampling
capacity. The likelihood of sampling a configuration with a
set number of features for a particular sample size grows as
sampling capacity rises.

According to Pearce's (1987, 1994) 64 631 configural model
of learning, the configurations of stimuli presented
determine associative power. Individuals with limited
sampling capacity can learn about the individual stimuli
rather than the combinations. To account for this
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adaptability, Byrom & Murphy (under review) propose
revising Pearce's (1987, 1994) [+ 61 configural model of
learning so that input can activate two sets of nodes: distinct
stimuli (A, B, and C) and presented combinations (A, BC,
and ABC). Both sets of nodes can create associations in
response to an unconditioned stimulus, and generalisation
can occur across all nodes. This can be accomplished by
changing Pearce's (1987, 1994) [%4 65 configural model of
associative learning so that variations in the excitatory
intensity of the individual stimuli and presented
configurations are controlled by the parameter f,
representing sampling capacity. At a large sampling
capacity, the excitatory power of presented configurations
varies between learning trials. At low sampling capacity, the
excitatory intensity of the individual stimuli varies between
learning trials. Because Pearce's (1987, 1994) [64 85
configural model heavily relies on the influence of
generalisation, any modifications to this model must
consider generalisation, which, like changes in excitatory
strength, is controlled by the parameter f. As a result, at a
high sampling capacity, associative strength to separate
stimuli and between presented configurations will be high,
whereas, at a low sampling capacity, associative strength to
separate stimuli and between presented configurations will
be low, but generalisation from separate stimuli to presented
configurations will be high.

The ability to specify parameters a priori determines how
much they can be utilised to predict learning and behaviour
in unexpected contexts. Each of these alterations encounters
difficulties in determining parameters in advance. The
replacement parameter is determined by the fraction of
elements replaced when a stimulus is delivered in compound
form. The discriminability parameter is based on the ability
to distinguish between stimuli. Calculating any of these
values for a specific stimulus set is achievable. Still, several
factors are likely to interact to affect "element replacement”
and stimulus discriminability, restricting the extent to which
these parameters may be stated in advance. Individual
variations in tendencies to exhibit local or global processing
can be used to calculate sampling capacity. This requires
relevant data, which includes participant performance on a
task like the Navon task (Navon, 1977) 64,

Conclusion

Individual variations in human associative learning appear
to impact learning significantly. This adaptability must be
expressed in terms of specific parameters to comprehend
and fully describe human associative learning. Though
adding new parameters for improving the adaptability of
learning models has limitations, investigating the level at
which variation among particular parameters can be used to
understand certain individual variations in  human
associative learning should improve understanding of the
associative learning mechanism.
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