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Abstract 

Associative learning has offered vital insights into psychopathology. However, illness exists on a 

continuum, and identifying disturbances in associative learning processes related to psychopathology 

demonstrates a general adaptability in human associative learning. A few studies have looked mainly at 

individual variations in human associative learning. Yet, while much work has focused on accounting 

for adaptability in learning caused by external factors, there has been little consideration of how to 

model the impact of dispositional factors. This review examines the spectrum of individual differences 

investigated in human associative learning, as well as attempts to understand and model this 

adaptability. To completely comprehend human associative learning, additional research must focus on 

the sources of diversity in human learning. 

 
Keywords: Association learning, individual variations, depression, psychopathology, perceptual 

processing 

 

Introduction 

Individual variations in the human population have been studied to improve understanding of 

anything from academic achievement to crime and delinquency, money and poverty, and 

health (Lubinski, 2000) [40]. Individual variations in human learning have helped us 

understand the mechanisms behind psychopathology, primarily because learning identifies a 

process and, thus, a method by which individuals may differ. Because psychopathology traits 

vary across the population, our study of the relationship between psychopathology and 

disruptions in association learning processes may reveal significant information on the nature 

and breadth of diversity in human associative learning. While proof that people do not all 

learn in the same way has been used to assist us in comprehending aspects of 

psychopathology, this investigation of adaptability in human learning must be integrated into 

our overall understanding of learning strategies so that models can account for the factors 

that cause variance in learning. Investigating individual variations in all areas of associative 

learning would be an overly broad scope for this review. This research examines diversity in 

learning about stimulus pairings in order to focus on individual variations. Specifically, this 

paper gives a variety of instances indicating individual variations in learning selectivity and 

proclivity to learn about certain elements or combinations, as well as how theories of 

associative learning might account for this variation. 

Associative learning theorists explore the acquisition and utilisation of connections between 

stimuli representations to interpret behaviour. Much of this research focuses on which factors 

affect learning and how they do so. The fundamental framework of error prediction learning, 

illustrated in Equation (1), gives us an idea of numerous elements that could influence 

learning. Rescorla and Wagner described this equation in 1972. ∆Vn = αn × β × (λ − ∑V) (1) 

This equation illustrates the change in associative intensity of a stimulus (∆Vn) as a function 

of prediction error, which is the difference between the expected and actual outcomes of a 

particular stimulus. The prediction error is calculated as the difference between the 

asymptote of learning (λ), the total associative intensity that the unconditioned stimulus (US) 
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 may support, and the current associative intensity of all 

stimuli on the trial. The prediction error is compounded by 

the salience or strength of the stimulus (α) and the US (β). 

Research has explored the impact of varying stimulus 

strength and salience (α) on learning (Logan, 1954; Perkins, 

1953; Redhead & Pearce, 1995) [39, 70, 74]. There has also 

been considerable discussion of how focus shifts between 

different stimuli can impact learning (Pearce & Hall, 1980; 

Mackintosh, 1975; McLaren et al., 2010; de Wit & 

Dickinson, 2009; Harris & Livesey, 2010; Le Pelley & 

McLaren, 2004; Lubow, 2010) [67, 46, 53, 14, 24, 36, 42], as well as 

how previous experiences may influence the acquisition of 

new stimulus representations and their associations 

(Seligman, 1972; Kamin, 1968; Lubow et al., 1976) [80, 28, 44]. 

This review examines whether these elements are constant 

across the population or whether their impact on learning 

varies by individual. Because much of the research on 

individual variations in human associative learning is related 

to psychopathology, this review draws mainly on examples 

from clinically focused studies. The research presented here 

shows significant individual variability in key components 

of associative learning. The article ended with a brief 

discussion of how theories of associative learning can 

account for observed individual variations. 

 

Stimulus Salience and Selective Prediction Error 

Individual variations in perceptions of what is essential may 

influence association formation. The efficacy of associative 

learning increases with stimulus salience (Kamin & Schaub, 

1963; Kamin & Brimer, 1963) [31, 30]. For example, if two 

stimuli of varying salience coexist, the more salient stimulus 

should develop stronger stimulus-outcome linkages 

(Mackintosh, 1971; Kamin, 1969) [45, 29]. Additionally, the 

potency of associative learning has been linked to that of the 

unconditioned stimulus (US; Pavlov, 1927) [63]. For 

example, conditioned response to shock in rabbits was 

found to be proportional to the shock's severity in the US 

(Smith, 1968) [82]. To summarise, with a somewhat simple 

example, a child playing with a toy could discover that 

pressing a lever on the object activates a light. The apparent 

intensity or salience of the light (the outcome of the 

behaviour) affects the associative intensity that can be 

maintained. The apparent kinaesthetic experience of 

touching the lever (the strength or salience of the stimulus) 

will also impact the learning degree. Variation in what 

people perceive as salient should have a significant impact 

on association acquisition, and it could result in disparities 

in associative learning in anxiety and depression. 

Depression has been linked to a preference for negative 

information (Mogg et al., 1995; Gotlib et al., 2004; Bradley 

et al., 1997; Matthews et al., 1995; Rusting, 1998, 1999; 

Phillips et al., 2010; Chan et al., 2007) [56, 20, 9, 50, 77, 78, 71, 12]. 

This should affect the associations learnt. Salient stimuli 

will be used to learn to the detriment of less salient stimuli 

(Mackintosh, 1971) [45]. As a result, if those suffering from 

or at risk of developing depression find negative information 

more prominent, they are more likely to make associations 

with negative stimuli rather than good or neutral stimuli. 

When learning happens, the amount of learning that may be 

maintained is determined by the strength of the consequence 

or unconditioned stimulus (Rescorla & Wagner, 1972) [76]. 

As in the case of the child playing with a toy, the link 

between pressing the leaver and the outcome of the light 

going on may be determined by both the brightness of the 

light and the child's interest in the lights. If the child shows 

little interest in lights, we may conclude that the lights 

perceived salience is restricted for that child. In this 

instance, the light's ability to facilitate learning should be 

minimised. Applying this logic to those suffering from 

depression, we can see how a propensity to find adverse 

information more salient may raise the perceived 

prominence of unfavourable outcomes. This should enhance 

adverse outcomes, allowing for a more substantial 

accumulation of associative strength. This could lead to 

those suffering from depression developing strong links 

between stimuli and unfavourable outcomes, increasing 

subsequent negative expectations. As a result, the 

inclination to prioritise negative information may reinforce 

the expectation of unfavourable outcomes.  

Similar discrepancies in stimulus perception may 

characterise anxiety-related fear conditioning. Enhanced 

fear conditioning may play an essential role in anxiety 

disorders (Mineka & Zinbarg, 2006; Craske et al., 2006) [54, 

13]. Variations in the perceived strength of a frightened 

stimulus may explain variations in how easily fear 

associations are learnt or maintained (Otto et al., 2007) [62]. 

For example, participants' judgements of the averseness of a 

US have been found to correlate strongly with their ability 

to learn to distinguish between a stimulus (CS) coupled with 

the aversive US and a CS not matched with the US (Joos et 

al., 2013) [27]. 

However, the prominence of a stimulus does not remain 

constant. Stimulus salience can vary with experience 

(Pearce & Hall, 1980; Pearce & Mackintosh, 2010; Le 

Pelley & McLaren, 2004; Mackintosh, 1975; Le Pelley et 

al., 2010) [67, 68, 36, 46, 37]. Learning may be easier with stimuli 

that have strong predictors of an outcome, whereas stimuli 

that are poor forecasters lose their capacity to capture 

attention (Mackintosh, 1975) [46]. Research investigating 

associative learning mechanisms, which may be underlying 

schizophrenia symptoms, has found examples of individual 

variations in stimulus salience changes across time. 

Usually, frequent exposure to a stimulus uncorrelated with 

an outcome reduces later ability to learn about that stimulus 

(Lubow et al., 1976; Lubow & Moore, 1959; Lubow, 2010) 

[44, 43, 42]. This phenomenon has been referred to as latent 

inhibition. One explanation for this change is that repeated 

contact with the stimulus reduces its salience, particularly its 

attentional associability, so the level of attention given to the 

stimulus decreases compared to other stimuli (Le Pelley, 

2004; Mackintosh, 1975) [35, 46]. Attentional associability 

determines which stimuli are accessible to learning and 

which are not (Le Pelley, 2004; Mackintosh, 1975) [35, 46]. 

Hence, a decrease in attentional associability should impair 

learning. 

This process of latent inhibition is interrupted in 

schizophrenia, and it is linked to negative symptoms 

precisely (Vaitl & Lipp, 1997; Lubow et al., 1976; Lubow, 

1989, 2010; Grey et al., 1995; Baruch et al., 1988; Gal et 

al., 2009; Rascle et al., 2001) [88, 44, 41, 42, 22, 7, 19, 72]. In 

contrast, animal models of positive schizophrenia symptoms 

have shown persistent latent inhibition or compelling latent 

inhibitory mechanisms (Weiner, 2003) [90]. Compared to the 

abundance of research on interrupted latent inhibition in 

human participants, there has been little investigation into 

the impact of persistent latent inhibition in the community. 

Further research would help determine whether associative 

learning mechanisms are relevant to understanding positive 
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 symptoms of schizophrenia. However, the disruption of 

latent inhibition linked to negative schizophrenia symptoms 

shows that negative symptoms are related to a deficiency in 

selective attention (Weiner et al., 1981, 1984; Solomon et 

al., 1981) [91, 92, 83] or selective prediction error (Hasselgrove 

& Evans, 2010) [26].  

Haselgrove & Evans (2010) [26] employed the blocking 

effect to investigate the link between selective prediction 

error and schizophrenia. Blocking is assumed to be based on 

selective prediction error. Kamin (1968, 1969) [28, 29] 

discovered that past training with one stimulus interacts with 

the acquisition of associative intensity with a second 

stimulus when delivered concurrently with the first stimulus. 

For example, suppose a stimulus is paired with an outcome 

(A+) before matching two stimuli with the same result 

(AXE+). In that case, the associative intensity acquired by 

the second stimulus (X) is lower than that of the control. 

According to Haselgrove & Evans (2010) [26], this impact is 

explained by selective prediction error. The Rescorla and 

Wagner model of learning, outlined above in Equation 1, 

employs a summed error term and anticipates that the 

change in the associative intensity of a stimulus is 

proportional to the difference between the asymptote of 

learning supported by the result and the associative strength 

of all stimuli offer on a trial. For example, A has previously 

predicted the result in the AXE compound trial. Therefore, 

the prediction error is minimal, prohibiting learning with X. 

A failure to display blocking may indicate that prediction 

error is non-selective, i.e., on the AXE compound trial, the 

associative intensity acquired by A is not considered when 

learning with X, and so learning with X may take place 

(Haselgrove & Evans, 2010) [26]. 

Blocking is disturbed in schizophrenia, which is linked to 

the disease's negative and depressive symptoms (Moran et 

al., 2008; Bender et al., 2001) [58, 8]. This impact has been 

reproduced in a non-clinical population; individuals with 

high levels of introverted anhedonia, a negative symptom of 

schizotypy, exhibit impaired blocking (Haselgrove & Evans, 

2010) [26]. The observation of this impact with the dimension 

of schizotypy shows that individuals in the general 

population vary significantly in the selectivity of their 

learning. 

 

Attending To the Cues or the Context  

In an associative learning model, participants are typically 

given the chance to learn how a stimulus predicts the result. 

Specificity is a key component of this learning. Learning 

that particular stimulus, rather than the context in which it is 

presented or any other given stimuli, predicts the result of 

interest. To return to the original example of a child playing 

with a toy, pressing the lever activates a light. Playing with 

the toy allows the child to experience the possibility of 

leaver pressing and the appearance of the light. Experience 

with this contingency should help you learn that pressing the 

leaver, instead of any other indication in the environment, 

turns on the light. 

A lack of specificity in learning could explain the link 

between anxiety and high levels of conditioned fear (Baas et 

al., 2008; Baas, 2013) [3, 2]. For example, suppose an 

unpleasant stimulus (US) is delivered in a specific context. 

In that case, it is possible that the context will become 

associated with the US, and so the context may begin to 

elicit a fear response. If the aversive US is always and only 

shown immediately following a given cue, the cue can be 

utilised to predict the aversive US. Learning the precise 

relationship between the cue and the US should lessen the 

link between the context and the aversive US, as the context 

is a less accurate predictor of the US than the cue. Failure to 

learn this precise association may result in ongoing overall 

anxiety about the context. Studies have found a link between 

learning a specific association between a danger cue and the 

unpleasant US and decreasing overall dread of the situation 

in which the cue and the aversive US are given. Baas (2013) 

[2] found that those who failed to understand the relationship 

between a specific threat cue and the unpleasant US 

assessed the situation in which that stimulus was given as 

frightening Participants who learnt the specific CS-US 

association experienced lower fear ratings for the scenario 

(Baas, 2013) [2]. However, this study found no link between 

trait anxiety and failure to learn the specific connection, 

while it is plausible that failure to learn the particular 

association is related to anxiety traits such as attentional 

control (Baas, 2013; Derryberry & Reed, 2002) [2, 16]. 

Individual variations in the specificity of learning about cues 

in a situation can be observed in contingency learning in 

humans. Learning contingencies enables people to judge 

how well events and actions predict future outcomes, 

enabling experience to guide behaviour (Baker et al., 2001) 

[6]. While positive contingencies, in which the probability of 

an event occurring rises with the presence of a stimulus, are 

common, we also encounter zero contingencies, in which 

the outcome is equally likely to happen in the presence or 

absence of a stimulus. The accuracy in detecting zero 

contingencies is relatively low, particularly when people are 

asked to examine whether their actions produce an outcome 

(Baker et al., 2010; Alloy & Abramson, 1979) [5, 1]. Alloy & 

Abramson (1979) [1] asked participants to press a light 

switch and assess how much control they had over a light 

turning on and off. There was no contingency connection 

between pressing the light switch and the light turning on; 

the light was equally likely to turn on during trials when the 

light switch was not pressed as during trials when it was 

pressed. Alloy & Abramson (1979) [1] discovered that sad 

individuals correctly perceived that they had no control over 

the light. Non-depressed individuals wrongly assumed they 

had control over the light. This phenomenon was dubbed 

depressive realism (Alloy & Abramson, 1979) [1]. Recent 

studies on this effect imply it is less susceptible to context 

information (Msetfi et al., 2005) [59]. Msetfi et al. (2005) [59] 

altered two factors when rerunning the original Alloy and 

Abramson experiment: result density and inter-trial interval 

(ITI). This experimental design divides the chance to press a 

light switch into trials based on the occurrence or non-

occurrence of the light. The ITI, or the amount of time 

between trials, can be modified. Event density, or the 

fraction of trials in which an event happens, can likewise be 

adjusted while keeping a zero contingency. For instance, in 

a low outcome density situation, the light may illuminate 

25% of the trials in which the light switch is pressed and 

25% of the trials in which it is not pressed. In a high 

outcome density situation, the light may turn on in 75% of 

trials when the light switch is pressed and 75% when it is 

not. 

Msetfi et al. (2005) [59] found that the original Depressive 

Realism impact occurred only when the ITI was long, and 

the resulting density was high. Non-depressed respondents 

did not overestimate their influence over the light during 

shorter ITIs or when the outcome density was lower. 
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 Interestingly, in a long ITI design, respondents are exposed 

to the context despite the outcome; that is, they have a more 

significant experience with no-action (those who 

participated cannot press the light switch during the ITI) and 

no outcome (the light never turns on during the ITI). Getting 

more exposed to the no-action, no-outcome contingency 

raises the contingency between action and outcome. As a 

result, given these conditions, non-depressed individuals 

were correct in assuming they had some influence over the 

outcome. The inability of depressed participants to enhance 

their judgements of control shows that they were 

unresponsive to the no-action, no-outcome information 

offered during the ITI (Baker et al., 2010; Msetfi et al., 

2005) [5, 59]. 

 

Learning About Constituent Elements or Configurations 

While linear learning is the acquisition and application of 

associations between single stimuli and outcomes, non-

linear learning is the learning of compound stimuli in 

separate configurations associated with different outcomes 

than those associated with the compound's constituent 

stimuli. The Rescorla &Wagner (1972) [76] model of 

elemental learning posits that each stimulus is processed 

separately, resulting in its own associative relationship to 

the outcome. When learning about and reacting to 

compound stimuli, this fundamental method assumes that 

each component stimulus forms its own associative 

relationship with the result. As a result, the model suggests 

that the associative intensity of a compound stimulus (Vab) 

is the algebraic sum of the associative strengths of the 

stimuli delivered (Vab = Va + Vb). While elemental theory 

actually accounts for situations in which the outcome of the 

co-occurrence of stimuli is higher than that of the separate 

constituent stimuli, non-linear bias tasks necessitate learning 

the opposite relationship: where the outcome of the co-

occurrence of stimuli is lower than, or opposite to, that of 

the separate constituent stimuli. Non-linear bias, such as 

negative patterning, can be solved successfully by humans 

and animals (Shanks & Darby, 1998; Deisig et al., 2001; 

Redhead & Pearce, 1995; Myers et al., 2001; Grand & 

Honey, 2008; Harris et al., 2008; Pearce & George, 2002;) 

[81, 15, 74, 60, 21, 25, 66]. This cannot be explained using the 

standard Rescorla & Wagner (1972) [76] elemental model. 

Non-linear bias learning, on the other hand, can be 

explained using configural theory (Pearce, 1987) [64]. 

Configural theory (Pearce, 1987) [64] holds that linkages 

emerge between outcomes and unitary or configural 

representations of the stimuli present in a given trial. As a 

result, the configuration contained in a compound trial (AB) 

should associate with an outcome irrespective of the 

associations built between the constituent stimuli and 

outcomes. Though these two types of models make 

opposing predictions about how the link between constituent 

stimuli and configurations should be taught, both models 

have substantial support, indicating significant diversity in 

non-linear learning. Melchers et al. (2008) [55]. 

It has been proposed that the perceptual qualities of stimuli 

impact whether learning occurs with individual constituent 

stimuli (elemental) or configurations (Kehoe et al., 1994; 

Myers et al., 2001; Rescorla & Coldwell, 1995; Lachnit, 

1988) [32, 60, 75, 34]. Others suggest that these are two distinct 

forms of learning, each mediated by a different neural 

substrate (Sutherland & Rudy, 1989; Fanselow, 1999) [84, 18]. 

Several studies have examined whether people differ in their 

proclivity to learn about constituent elements or 

arrangements. The negative patterned discrimination (A+, 

B+, AB−) is an adequate test of configural learning, as it 

requires participants to learn that the compound stimulus has 

a different outcome than each constituent stimulus. Shanks 

and Darby (1998) [81] proposed that humans' ability to learn 

non-linear discriminations, like negative patterning, may be 

contingent on rule use. Shanks & Darby (1998) [81] found 

that the capacity to learn negative patterning discrimination 

was linked to later usage of rule-based generalisation rather 

than feature-based generalisation. Rule-based generalisation 

relies on the abstraction and generalisation of a rule. Surface 

similarity across different stimuli and molecules is required 

for feature-based generalisation. As a result, it is 

hypothesised that rule-based generalisation is more 

complex. It may be a deeper grasp of the discrimination 

(Shanks & Darby, 1998) [81] or increased working memory 

capacity (Wills et al., 2011) [93]. 

In the Shanks & Darby (1998) [81] experiment, respondents 

were trained on negative patterning discrimination (A+, B+, 

AB−) intermixed with trials in which separate stimuli were 

paired with the outcome (I+, J+) before being prompted to 

predict the result following the co-occurrence of the 

separately trained stimuli (IJ?). Some of the respondents 

predicted the event to occur after the IJ compound, 

demonstrating feature-based generalisation. Others showed 

the use of a negative patterning rule, which predicted no 

effect after the IJ compound. Rule-based generalisation was 

linked to significant initial discrimination learning (Shanks 

& Darby, 1998) [81]. Wills et al. (2011) [93] discovered that 

people who completed a concurrent activity while learning 

the same initial discrimination were prone to exhibit feature-

based generalisation (Wills, 2011) [93]. As a result, larger 

working memory capacity may correlate with more 

substantial non-linear discrimination learning and rule-based 

generalisation. Baker (2013) [4] found that success in Raven's 

Progressive Matrices (Raven, 2000) [73] was associated with 

the capacity to learn about negative patterning 

discrimination. Ravens Matrices are intended to measure 

reasoning abilities. Therefore, these findings may support 

the hypothesis that rule use enhances non-linear 

discrimination learning, like negative patterning. 

Negative patterning, on the other hand, necessitates learning 

about a configuration (i.e., the coexistence of stimuli) in 

addition to learning about the constituent stimuli. We can 

thus assume that a proclivity to perceive or interpret 

groupings of stimuli as a unitary configuration rather than 

just a cluster of co-occurring inputs may influence 

performance. Similar requirements for tasks have been 

investigated in other fields of psychology. For example, face 

recognition is assumed to rely on configural processing 

(Tanaka &Farah, 1993; Diamond & Carey, 1986; Maurer et 

al., 2002; Leder & Bruce, 2000) [85, 17, 51, 38]. Strong face 

recognition has been linked to a general advantage in global 

processing (Perfect, 2003; Macrae & Lewis, 2002) [69, 47], 

which tends to process global information first or with a 

greater priority than the particular elements that make up the 

global stimuli (Navon, 1977). [61] 

Individual variations in their inclination to demonstrate a 

global or local processing advantage (Navon, 1977) [61], and 

it may be that this variation relates to, or impacts, the ability 

to learn about combinations of inputs and so learn a non-

linear discriminate. Byrom & Murphy (under review) found 
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 that individuals with a global processing advantage were 

more likely to discriminate BC from ABC in an improved 

negative patterning task (A+, BC+, ABC−), which is similar 

to the discrimination task developed by Shanks and Darby. 

 

Modeling Individual Difference in Human Associative 

Learning  

Using associative learning to investigate clinical events has 

helped us better understand the mechanisms behind 

cognitive aspects of psychopathology. Given that 

psychopathology is widely considered to occur on a 

spectrum, the clinical cases offered here help to demonstrate 

significant individual variations in associative learning 

processes. For example, whereas schizophrenia is a primary 

mental health disease with a prevalence of approximately 

0.4% (McGrath et al., 2008; Saha et al., 2005) [52, 79], 

schizotypy, a dimension reflecting schizophrenia features, 

varies across the population (Mason & Claridge, 2006; 

Mason et al., 2005) [48, 49]. Schizotypy, like schizophrenia, is 

linked to disruptions in latent inhibition and blocking 

(Haselgrove & Evans, 2010; Moran et al., 2003) [26, 57], 

and poor conditional task performance (Haddon et al., 2011) 

[23] and visual context processing (Uhlhaas & Silverstein, 

2005; Uhlhaas et al., 2004) [86, 87]. 

Models of learning might be required to account for this 

adaptability. If associative learning mechanisms differ 

throughout the population, focusing on the average 

performance of a sample while creating learning models 

may result in models that do not accurately capture the 

population's performance. Simple learning models have seen 

numerous revisions over time. While these improvements 

help the models to capture a greater variety of experimental 

results, many different parameters change during learning. 

Thus, it may not be appropriate to look for a single 

alteration to account for all variability in learning. One 

measure is unlikely to capture all components contributing 

to individual variability in human associative learning. 

Individual variations in many of the above characteristics 

can be reflected by changing the parameters in the Rescorla 

& Wagner (1972) [76] learning model, as given in Equation 

(1). Modifying α or β can account for individual variations 

in the perceived salience of the CS or US. Varying λ 

accommodates individual variations in learning rates. 

Furthermore, Haselgrove & Evans (2010) [26] found that it 

may be possible to account for individual variations in 

learning selectivity by altering the extent to which a 

separable (Bush & Mosteller, 1951) [10] rather than a 

summed (Rescorla & Wagner, 1972) [76] error term is used. 

The variation and integration of summed and separable error 

terms, as well as their relationship to attention processes, 

have been extensively studied elsewhere (Pearce & 

Mackintosh, 2010; Lepelley, 2004) [68, 35]. 

On the other hand, individual variations in the capacity to 

solve negative patterning to discrimination cannot be 

explained by changing existing parameters in this model. At 

least three ways have been proposed to offer adaptability 

between elemental and configural learning models: the 

sampling capacity parameter, the discriminability parameter 

and the replacement parameter. Each is discussed below. 

The Replaced Elements Model (Wagner, 2003; Brandon et 

al., 2000) [89, 11] views stimuli as having several features or 

elements. The model focuses on the characteristics of all 

stimuli and how they interact with elements distinctive to 

each stimulus. In a compound representation, context-

independent elements are thought to be activated anytime 

the stimulus is delivered. In contrast, context-dependent 

elements can be stimulated or inhibited based on the 

combinations of stimuli shown (Brandon et al. 2000) [11]. 

For example, if stimulus A is delivered alone, 

representations of items A1 and A2 may be engaged. When 

stimulus A is provided along with stimulus B, the element 

A2 can be replaced by a new element, A3. The paradigm 

requires that a compound have no more remarkable ability 

to evoke associative power than any of its individual 

constituents. As a result, adding and inhibiting elements 

causes a qualitative change in represented elements instead 

of a quantitative change. 

The replacement parameter r allows for variation in the 

proportion of context-dependent elements replaced when 

stimuli are given in compound form (Wagner, 2003) [89]. 

When r is zero, no replacement occurs, and so a 

considerable generalisation of associative power between 

stimuli and compounds is expected. When r is 1, elements 

are significantly replaced; hence, the generalisation 

predicted between compounds and constituent stimuli is 

diminished. With maximal element replacement, the 

compound representation must be unique from the 

representations of the individual stimuli. 

The discriminability parameter proposed by Kinder & 

Lachnit (2003) [33] adds flexibility to a configurable learning 

model (Pearce, 1987) [64], enabling the perceived similarity 

between stimuli and compounds to be adjusted. This also 

influences how much generalisation of associative power is 

projected. The change implies that as it gets more 

challenging to determine constituent stimuli within 

compounds, the discriminability parameter will fall, 

lowering the prediction of perceived similarity between 

compounds and constituent stimuli (Kinder & Lachnit, 

2003) [33]. 

Although the replacement and discriminability parameters 

were designed to account for the influence of external 

factors like stimulus modality (Kehoe et al., 1994) [32], the 

sampling capacity parameter was created to account for 

individual variations found in human associative learning. 

Sampling capacity is defined as the number of stimulus 

features that are capable of being sampled within a single 

trial. To learn about and react to the co-occurrence of 

stimuli as a distinct combination, Byrom & Murphy (under 

review) propose that aspects of each co-occurring stimulus 

be collected concurrently to represent a configuration in any 

given sample. Variations in sampling capacity must result in 

variations in the amount to which co-occurring stimulus 

features can be sampled, as well as variations in the ability 

to encode and learn about the various combinations of 

stimuli needed to acquire non-linear discrimination. Byrom 

& Murphy (under review) propose that the influence of 

changing sampling capacity can be modelled by integrating 

a parameter, f, into a variant of Pearce's configural model of 

associative learning. This value reflects the chance of 

encoding a configuration computed using sampling 

capacity. The likelihood of sampling a configuration with a 

set number of features for a particular sample size grows as 

sampling capacity rises. 

According to Pearce's (1987, 1994) [64, 65] configural model 

of learning, the configurations of stimuli presented 

determine associative power. Individuals with limited 

sampling capacity can learn about the individual stimuli 

rather than the combinations. To account for this 
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 adaptability, Byrom & Murphy (under review) propose 

revising Pearce's (1987, 1994) [64, 65] configural model of 

learning so that input can activate two sets of nodes: distinct 

stimuli (A, B, and C) and presented combinations (A, BC, 

and ABC). Both sets of nodes can create associations in 

response to an unconditioned stimulus, and generalisation 

can occur across all nodes. This can be accomplished by 

changing Pearce's (1987, 1994) [64, 65] configural model of 

associative learning so that variations in the excitatory 

intensity of the individual stimuli and presented 

configurations are controlled by the parameter f, 

representing sampling capacity. At a large sampling 

capacity, the excitatory power of presented configurations 

varies between learning trials. At low sampling capacity, the 

excitatory intensity of the individual stimuli varies between 

learning trials. Because Pearce's (1987, 1994) [64, 65] 

configural model heavily relies on the influence of 

generalisation, any modifications to this model must 

consider generalisation, which, like changes in excitatory 

strength, is controlled by the parameter f. As a result, at a 

high sampling capacity, associative strength to separate 

stimuli and between presented configurations will be high, 

whereas, at a low sampling capacity, associative strength to 

separate stimuli and between presented configurations will 

be low, but generalisation from separate stimuli to presented 

configurations will be high. 

The ability to specify parameters a priori determines how 

much they can be utilised to predict learning and behaviour 

in unexpected contexts. Each of these alterations encounters 

difficulties in determining parameters in advance. The 

replacement parameter is determined by the fraction of 

elements replaced when a stimulus is delivered in compound 

form. The discriminability parameter is based on the ability 

to distinguish between stimuli. Calculating any of these 

values for a specific stimulus set is achievable. Still, several 

factors are likely to interact to affect "element replacement" 

and stimulus discriminability, restricting the extent to which 

these parameters may be stated in advance. Individual 

variations in tendencies to exhibit local or global processing 

can be used to calculate sampling capacity. This requires 

relevant data, which includes participant performance on a 

task like the Navon task (Navon, 1977) [61]. 

 

Conclusion 

Individual variations in human associative learning appear 

to impact learning significantly. This adaptability must be 

expressed in terms of specific parameters to comprehend 

and fully describe human associative learning. Though 

adding new parameters for improving the adaptability of 

learning models has limitations, investigating the level at 

which variation among particular parameters can be used to 

understand certain individual variations in human 

associative learning should improve understanding of the 

associative learning mechanism. 

 

References 

1. Alloy LB, Abramson LY. Judgment of contingency in 

depressed and nondepressed students: sadder but wiser. 

Journal of Experimental Psychology: General. 

1979;108(4):441-485. 

2. Baas JM. Individual differences in predicting aversive 

events and modulating contextual anxiety in a context 

and cue conditioning paradigm. Biological Psychology. 

2013;92:17-25. 

3. Baas JM, van Ooijen L, Goudriaan A, Kenemans JL. 

Failure to condition to a cue is associated with sustained 

contextual fear. Acta Psychologica. 2008;127:581-592. 

4. Baker AG. Individual differences in associative 

learning. Cardiff: Paper presented at the Associative 

Learning Symposium; 2013. 

5. Baker AG, Msetfi RM, Hanley N, Murphy RA. 

Depressive realism? Sadly not wiser. In: Haselgrove M, 

Hogarth L, editors. Clinical applications of learning 

theory. Hove: Psychology Press; 2010. p. 153-177. 

6. Baker AG, Murphy RA, Vallée-Tourangeau F, Mehta 

R. Contingency learning and causal reasoning. In: 

Mowrer RR, Klein SB, editors. Handbook of 

contemporary learning theories. Mahwah (NJ): 

Lawrence Erlbaum Associates; 2001. p. 255-306. 

7. Baruch I, Hemsley DR, Gray JA. Differential 

performance of acute and chronic schizophrenics in a 

latent inhibition task. Journal of Nervous and Mental 

Disease. 1988;176:598-606. 

8. Bender S, Müller B, Oades RD, Sartory G. Conditioned 

blocking and schizophrenia: a replication and study of 

the role of symptoms, age, onset-age of psychosis and 

illness-duration. Schizophrenia Research. 2001;49:157-

170. 

9. Bradley BP, Mogg K, Lee SC. Attentional biases for 

negative information in induced and naturally occurring 

dysphoria. Behaviour Research and Therapy. 

1997;35:911-927. 

10. Bush RR, Mosteller F. A model for stimulus 

generalization and discrimination. Psychological 

Review. 1951;58:413-423. 

11. Brandon SE, Vogel EH, Wagner AR. A componential 

view of configural cues in generalization and 

discrimination in Pavlovian conditioning. Behavioural 

Processes. 2000;51:67-72. 

12. Chan SWY, Goodwin GM, Harmer CJ. Highly neurotic 

never-depressed students have negative biases in 

information processing. Psychological Medicine. 

2007;37:1281-1291. 

13. Craske MG, Hermans D, Vansteenwegen D. Fear and 

learning: from basic processes to clinical implications. 

Washington (DC): American Psychological 

Association; 2006. p. 1-312. 

14. de Wit S, Dickinson A. Associative theories of goal-

directed behaviour: a case for animal-human 

translational models. Psychological Research. 

2009;73:463-476. 

15. Deisig N, Lachnit H, Giurfa M, Hellstern F. Configural 

olfactory learning in honeybees: negative and positive 

patterning discrimination. Learning and Memory. 

2001;8:70-78. 

16. Derryberry D, Reed MA. Anxiety-related attentional 

biases and their regulation by attentional control. 

Journal of Abnormal Psychology. 2002;111:225-236. 

17. Diamond R, Carey S. Why faces are and are not 

special: an effect of expertise. Journal of Experimental 

Psychology: General. 1986;115:107-117. 

18. Fanselow MS. Learning theory and neuropsychology: 

configuring their disparate elements in the 

hippocampus. Journal of Experimental Psychology: 

Animal Behavior Processes. 1999;25:275-283. 
19. Gal G, Barnea Y, Biran L, Mendlovic S, Gedi T, 

Halavy M, et al. Enhancement of latent inhibition in 
patients with chronic schizophrenia. Behavioural Brain 
Research. 2009;197:1-8. 

https://www.humanitiesjournal.net/


 

~ 49 ~ 

International Journal of Humanities and Education Research https://www.humanitiesjournal.net 

 
 
 20. Gotlib IH, Krasnoperova E, Yue DN, Joormann J. 

Attentional biases for negative interpersonal stimuli in 
clinical depression. Journal of Abnormal Psychology. 
2004;113:127-135. 

21. Grand C, Honey RC. Solving XOR. Journal of 
Experimental Psychology: Animal Behavior Processes. 
2008;34:486-493. 

22. Gray NS, Pilowsky LS, Gray JA, Kerwin RW. Latent 
inhibition in drug-naive schizophrenics: relationship to 
duration of illness and dopamine D2 binding using 
SPET. Schizophrenia Research. 1995;17:95-107. 

23. Haddon JE, George DN, Grayson L, McGowan C, 
Honey RC, Killcross S. Impaired conditional task 
performance in a high schizotypy population: relation to 
cognitive deficits. Quarterly Journal of Experimental 
Psychology. 2011;64:1-9. 

24. Harris JA, Livesey EJ. An attention-modulated 
associative network. Learning and Behavior. 2010;38:1-
26. 

25. Harris JA, Livesey EJ, Gharaei S, Westbrook RF. 
Negative patterning is easier than a biconditional 
discrimination. Journal of Experimental Psychology: 
Animal Behavior Processes. 2008;34:494-500. 

26. Haselgrove M, Evans LH. Variations in selective and 
nonselective prediction error with the negative 
dimension of schizotypy. Quarterly Journal of 
Experimental Psychology. 2010;63:1127-1149. 

27. Joos E, Vansteenwegen D, Hermans D. Worry as a 
predictor of fear acquisition in a non-clinical sample. 
Behaviour Modification. 2013;36:723-739. 

28. Kamin LJ. Attention-like processes in classical 
conditioning. In: Jones MR, editor. Miami symposium 
on the prediction of behaviour: aversive stimulation. 
Miami: University of Miami Press; 1968. p. 9-33. 

29. Kamin LJ. Predictability, surprise, attention and 
conditioning. In: Campbell BA, Church RM, editors. 
Punishment and aversive behaviour. New York: 
Appleton-Century-Crofts; 1969. p. 279-296. 

30. Kamin LJ, Brimer CJ. The effects of intensity of 
conditioned and unconditioned stimuli on a conditioned 
emotional response. Canadian Journal of Psychology. 
1963;17:194-200. 

31. Kamin LJ, Schaub RE. Effects of conditioned stimulus 
intensity on the conditioned emotional response. 
Journal of Comparative and Physiological Psychology. 
1963;56:502-507. 

32. Kehoe EJ, Horne AJ, Horne PS, Macrae M. Summation 
and configuration between and within sensory 
modalities in classical conditioning of the rabbit. 
Animal Learning and Behavior. 1994;22:19-26. 

33. Kinder A, Lachnit H. Similarity and discrimination in 
human Pavlovian conditioning. Psychophysiology. 
2003;40:226-234. 

34. Lachnit H. Convergent validation of information-
processing constructs with pavlovian methodology. 
Journal of Experimental Psychology: Human 
Perception and Performance. 1988;14:143-152. 

35. Le Pelley ME. The role of associative history in models 
of associative learning: a selective review and a hybrid 
model. Quarterly Journal of Experimental Psychology 
B. 2004;57:193-243. 

36. Le Pelley ME, McLaren IPL. Associative history 
affects the associative change undergone by both 
presented and absent cues in human causal learning. 
Journal of Experimental Psychology: Animal Behavior 
Processes. 2004;30:67-73. 

37. Le Pelley ME, Turnbull MN, Reimers SJ, Knipe RL. 
Learned predictiveness effects following single-cue 

training in humans. Learning and Behavior. 
2010;38:126-144. 

38. Leder H, Bruce V. When inverted faces are recognized: 
the role of configural information in face recognition. 
Quarterly Journal of Experimental Psychology A. 
2000;53:513-536. 

39. Logan FA. A note on stimulus intensity dynamism. 
Psychological Review. 1954;61:77-80. 

40. Lubinski D. Scientific and social significance of 
assessing individual differences: “sinking shafts at a 
few critical points”. Annual Review of Psychology. 
2000;51:405-444. 

41. Lubow RE. Latent inhibition and conditioned attention 
theory. New York: Cambridge University Press; 1989. 

42. Lubow RE. Latent inhibition. In: Corsini Encyclopedia 
of Psychology. John Wiley & Sons, Inc; 2010. 

43. Lubow RE, Moore AU. Latent inhibition: the effect of 
nonreinforced pre-exposure to the conditional stimulus. 
Journal of Comparative and Physiological Psychology. 
1959;52:415-419. 

44. Lubow RE, Schnur P, Rifkin B. Latent inhibition and 
conditioned attention theory. Journal of Experimental 
Psychology: Animal Behavior Processes. 1976;2:163-
174. 

45. Mackintosh NJ. Analysis of overshadowing and 
blocking. Quarterly Journal of Experimental 
Psychology. 1971;23:118-125. 

46. Mackintosh NJ. Theory of attention variations in 
associability of stimuli with reinforcement. 
Psychological Review. 1975;82:276-298. 

47. Macrae CN, Lewis HL. Do I know you? Processing 
orientation and face recognition. Psychological Science. 
2002;13:194-196. 

48. Mason O, Claridge G. The Oxford-Liverpool Inventory 
of Feelings and Experiences (OLIFE): further 
description and extended norms. Schizophrenia 
Research. 2006;82:203-211. 

49. Mason O, Linney Y, Claridge G. Short scales for 
measuring schizotypy. Schizophrenia Research. 
2005;78:293-296. 

50. Matthews G, Pitcaithly D, Mann RLE. Mood, 
neuroticism, and the encoding of affective words. 
Cognitive Therapy and Research. 1995;19:563-587. 

51. Maurer D, Le Grand R, Mondloch CJ. The many faces 
of configural processing. Trends in Cognitive Sciences. 
2002;6:255-260. 

52. McGrath J, Saha S, Chant D, Welham J. Schizophrenia: 
a concise overview of incidence, prevalence, and 
mortality. Epidemiologic Reviews. 2008;30:67-76. 

53. McLaren IPL, Wills AJ, Graham S. Attention and 
perceptual learning. In: Mitchell C, Le Pelley MEL, 
editors. Attention and associative learning: from brain 
to behaviour. Oxford: Oxford University Press; 2010. p. 
133-158. 

54. Mineka S, Zinbarg R. A contemporary learning theory 
perspective on the etiology of anxiety disorders it’s not 
what you thought it was. American Psychologist. 
2006;61:10-26. 

55. Melchers KG, Shanks DR, Lachnit H. Stimulus coding 

in human associative learning: flexible representations 

of parts and wholes. Behavioural Processes. 

2008;77:413-427. 

56. Mogg K, Bradley BP, Williams R. Attentional bias in 

anxiety and depression the role of awareness. British 

Journal of Clinical Psychology. 1995;34:17-36. 
57. Moran PM, Al-Uzri MM, Watson J, Reveley MA. 

Reduced Kamin blocking in non-paranoid 
schizophrenia: associations with schizotypy. Journal of 
Psychiatric Research. 2003;37:155-163. 

https://www.humanitiesjournal.net/


 

~ 50 ~ 

International Journal of Humanities and Education Research https://www.humanitiesjournal.net 

 
 
 58. Moran PM, Owen L, Crookes AE, Al-Uzri MM, 

Reveley MA. Abnormal prediction error is associated 
with negative and depressive symptoms in 
schizophrenia. Progress in Neuro-Psychopharmacology 
and Biological Psychiatry. 2008;32:116-123. 

59. Msetfi RM, Murphy RA, Simpson J, Kornbrot DE. 
Depressive realism and outcome density bias in 
contingency judgments: the effect of the context and 
intertrial interval. Journal of Experimental Psychology: 
General. 2005;134:10-22. 

60. Myers KM, Vogel EH, Shin J, Wagner AR. A 
comparison of the Rescorla-Wagner and Pearce models 
in a negative patterning and a summation problem. 
Animal Learning and Behavior. 2001;29:36-45. 

61. Navon D. Forest before trees precedence of global 
features in visual perception. Cognitive Psychology. 
1977;9:353-383. 

62. Otto MW, Leyro TM, Christian K, Deveney CM, Reese 
H, Pollack MH, et al. Prediction of “fear” acquisition in 
healthy control participants in a de novo fear-
conditioning paradigm. Behaviour Modification. 
2007;31:32-51. 

63. Pavlov IP. Conditioned reflexes. Oxford: Oxford 
University Press; 1927. 

64. Pearce JM. A model for stimulus-generalization in 
pavlovian conditioning. Psychological Review. 
1987;94:61-73. 

65. Pearce JM. Similarity. Psychological Review. 
1994;101:587-607. 

66. Pearce JM, George DN. The effects of using stimuli 
from three different dimensions on autoshaping with a 
complex negative patterning discrimination. Quarterly 
Journal of Experimental Psychology B. 2002;55:349-
364. 

67. Pearce JM, Hall G. A model for pavlovian learning 
variations in the effectiveness of conditioned but not of 
unconditioned stimuli. Psychological Review. 
1980;87:532-552. 

68. Pearce JM, Mackintosh NJ. Two theories of attention: a 
review and possible integration. In: Mitchell C, Le 
Pelley MEL, editors. Attention and associative learning: 
from brain to behaviour. Oxford: Oxford University 
Press; 2010. p. 11-40. 

69. Perfect TJ. Local processing bias impairs lineup 
performance. Psychological Reports. 2003;93:393-394. 

70. Perkins CC. The relation between conditioned stimulus 
intensity and response strength. Journal of Experimental 
Psychology. 1953;46:225-231. 

71. Phillips WJ, Hine DW, Thorsteinsson EB. Implicit 
cognition and depression: a meta-analysis. Clinical 
Psychology Review. 2010;30:691-709. 

72. Rascle C, Mazas O, Vaiva G, Tournant M, Raybois O, 
Goudemand M, et al. Clinical features of latent 
inhibition in schizophrenia. Schizophrenia Research. 
2001;51:149-161. 

73. Raven J. The Raven’s progressive matrices: change and 
stability over culture and time. Cognitive Psychology. 
2000;41:1-48. 

74. Redhead ES, Pearce JM. Stimulus salience and negative 
patterning. Quarterly Journal of Experimental 
Psychology B. 1995;48:67-83. 

75. Rescorla RA, Coldwell SE. Summation in autoshaping. 
Animal Learning and Behavior. 1995;23:314-326. 

76. Rescorla RA, Wagner AR, editors. A theory of 
Pavlovian conditioning: variations in the effectiveness 
of reinforcement and nonreinforcement. New York: 
Appleton-Century-Crofts; 1972. 

77. Rusting CL. Personality, mood, and cognitive 
processing of emotional information: three conceptual 
frameworks. Psychological Bulletin. 1998;124:165-196. 

78. Rusting CL. Interactive effects of personality and mood 
on emotion-congruent memory and judgment. Journal 
of Personality and Social Psychology. 1999;77:1073-
1086. 

79. Saha S, Chant D, Welham J, McGrath J. A systematic 
review of the prevalence of schizophrenia. PLoS 
Medicine. 2005;2:e141. 

80. Seligman ME. Learned helplessness. Annual Review of 
Medicine. 1972;23:407-412. 

81. Shanks DR, Darby RJ. Feature- and rule-based 
generalization in human associative learning. Journal of 
Experimental Psychology: Animal Behavior Processes. 
1998;24:405-415. 

82. Smith MC. CS-US interval and US intensity in classical 
conditioning of the rabbit’s nictitating membrane 
response. Journal of Comparative Physiology. 
1968;66:679-687. 

83. Solomon PR, Crider A, Winkelman JW, Turi A, Kamer 
RM, Kaplan LJ. Disrupted latent inhibition in the rat 
with chronic amphetamine or haloperidol-induced 
supersensitivity relationship to schizophrenic attention 
disorder. Biological Psychiatry. 1981;16:519-537. 

84. Sutherland RJ, Rudy JW. Configural association theory 
the role of the hippocampal formation in learning, 
memory, and amnesia. Psychobiology. 1989;17:129-
144. 

85. Tanaka JW, Farah MJ. Parts and wholes in face 
recognition. Quarterly Journal of Experimental 
Psychology A. 1993;46:225-245. 

86. Uhlhaas PJ, Silverstein SM. Perceptual organization in 
schizophrenia spectrum disorders: empirical research 
and theoretical implications. Psychological Bulletin. 
2005;131:618-632. 

87. Uhlhaas PJ, Silverstein SM, Phillips WA, Lovell PG. 
Evidence for impaired visual context processing in 
schizotypy with thought disorder. Schizophrenia 
Research. 2004;68:249-260. 

88. Vaitl D, Lipp OV. Latent inhibition and autonomic 
responses: a psychophysiological approach. 
Behavioural Brain Research. 1997;88:85-93. 

89. Wagner AR. Context-sensitive elemental theory. 
Quarterly Journal of Experimental Psychology B. 
2003;56:7-29. 

90. Weiner I. The ‘two-headed’ latent inhibition model of 
schizophrenia: modeling positive and negative 
symptoms and their treatment. Psychopharmacology. 
2003;169:257-297. 

91. Weiner I, Lubow RE, Feldon J. Chronic amphetamine 
and latent inhibition. Behavioural Brain Research. 
1981;2:285-286. 

92. Weiner I, Lubow RE, Feldon J. Abolition of the 
expression but not the acquisition of latent inhibition by 
chronic amphetamine in rats. Psychopharmacology. 
1984;83:194-199. 

93. Wills AJ, Graham S, Koh ZS, McLaren IPL, Rolland 

MD. Effects of concurrent load on feature- and rule-

based generalization in human contingency learning. 

Journal of Experimental Psychology: Animal Behavior 

Processes. 2011;37:308-316. 

https://www.humanitiesjournal.net/

